Skip to content

matrix.py

Helper methods for working with matrices.

To create matrices:

from pymwp.matrix import init_matrix, identity_matrix

To compute matrix sum and product:

from pymwp.matrix import matrix_prod, matrix_sum

Other utility methods:

from pymwp.matrix import equals, fixpoint, show, resize, encode, decode

decode

decode(matrix: List[List[List[dict]]]) -> MATRIX

Converts matrix of dictionaries to a matrix of polynomials.

Primary use case of this function is for restoring a matrix of polynomials from a file (assuming encode was used to generate that file).

Parameters:

Name Type Description Default
matrix List[List[List[dict]]]

matrix to decode

required

Raises:

Type Description
TypeError

If the matrix value is not iterable

AttributeError

If the matrix elements are not valid encoded polynomials.

Returns:

Type Description
MATRIX

Decoded matrix of polynomials.

encode

encode(matrix: MATRIX) -> List[List[List[dict]]]

Converts a matrix of polynomials to a matrix of dictionaries.

This function is useful when preparing to write a matrix of polynomials to a file. The same matrix can later be restored using matrix decode.

Parameters:

Name Type Description Default
matrix MATRIX

matrix to encode

required

Raises:

Type Description
AttributeError

If the matrix does not contain polynomials.

Returns:

Type Description
List[List[List[dict]]]

Encoded matrix.

equals

equals(matrix1: MATRIX, matrix2: MATRIX) -> bool

Determine if two matrices are equal.

This function performs element-wise equality comparisons on values of two matrices. The two matrices must be the same size. For any two matrices of different size the result is always False.

This function can evaluate values that are comparable by equals == operator.

Parameters:

Name Type Description Default
matrix1 MATRIX

First matrix.

required
matrix2 MATRIX

Second matrix.

required

Raises:

Type Description
TypeError

If the matrix value is not iterable.

Returns:

Type Description
bool

True if matrices are equal element-wise and False otherwise.

fixpoint

fixpoint(matrix: MATRIX) -> MATRIX

Computes the star operation \(1 + M + M^2 + M^3 + …\)

This function assumes provided input is a square matrix.

Parameters:

Name Type Description Default
matrix MATRIX

Matrix for which to compute fixpoint.

required

Returns:

Type Description
MATRIX

\(M^*\)

identity_matrix

identity_matrix(size: int) -> List[list]

Create identity matrix of specified size.

Example

Generate 5 x 5 size identity matrix:

identity_matrix(5)

Generates:

[[m, o, o, o, o],
 [o, m, o, o, o],
 [o, o, m, o, o],
 [o, o, o, m, o],
 [o, o, o, o, m]]

Parameters:

Name Type Description Default
size int

matrix size

required

Returns:

Type Description
List[list]

New identity matrix.

init_matrix

init_matrix(size: int, init_value: Optional[Any] = None) -> List[list]

Create empty matrix of specified size.

Example

Generate 5 x 5 size zero-matrix.

init_matrix(5)

Generates:

[[o, o, o, o, o],
 [o, o, o, o, o],
 [o, o, o, o, o],
 [o, o, o, o, o],
 [o, o, o, o, o]]

Parameters:

Name Type Description Default
size int

matrix size.

required
init_value Optional[Any]

value to place at each index. If not provided, will default to 0-polynomial.

None

Returns:

Type Description
List[list]

Initialized matrix.

matrix_prod

matrix_prod(matrix1: MATRIX, matrix2: MATRIX) -> MATRIX

Compute the product of two polynomial matrices.

Parameters:

Name Type Description Default
matrix1 MATRIX

First polynomial matrix.

required
matrix2 MATRIX

Second polynomial matrix.

required

Returns:

Type Description
MATRIX

A new matrix that represents the product of the two inputs.

matrix_sum

matrix_sum(matrix1: MATRIX, matrix2: MATRIX) -> MATRIX

Compute the sum of two polynomial matrices.

Parameters:

Name Type Description Default
matrix1 MATRIX

First polynomial matrix.

required
matrix2 MATRIX

Second polynomial matrix.

required

Returns:

Type Description
MATRIX

A new matrix that represents the sum of the two inputs.

resize

resize(matrix: MATRIX, new_size: int) -> MATRIX

Create a new matrix of polynomials of specified size.

The resized matrix is initialized as an identity matrix then filled with values from the original matrix.

Parameters:

Name Type Description Default
matrix MATRIX

original matrix

required
new_size int

width/height of new matrix

required

Returns:

Type Description
MATRIX

New matrix of specified size, filled with values from the original matrix.

show

show(
    matrix: MATRIX,
    prefix: str = None,
    postfix: str = None,
    fmt: Callable[[Any], str] = None,
) -> None

Pretty print a matrix at the screen.

Using the keyword arguments to display additional text before or after the matrix.

Example
my_matrix = identity_matrix(3)
show(my_matrix)

Displays:

+m  +o  +o
+o  +m  +o
+o  +o  +m
my_matrix = identity_matrix(3)
header = ' x1  x2  x3'
show(my_matrix, prefix=header)

Displays:

x1  x2  x3
+m  +o  +o
+o  +m  +o
+o  +o  +m

Parameters:

Name Type Description Default
matrix MATRIX

The matrix to display.

required
prefix str

display some text before displaying matrix

None
postfix str

display some text after displaying matrix

None
fmt Callable[[Any], str]

Optional element formatter function.

None

Raises:

Type Description
TypeError

If the matrix is not iterable (type list of lists)