pymwp: A Static Analyzer Determining

Polynomial Growth Bounds
Tool User Guide

Clément Aubert Thomas Rubiano Neea Rusch Thomas Seiller

May 10, 2023

Contents

1 Introduction

1.1 Property of Interest

1.2 What mwp-Flow Analysis Computes

1.3 Interpreting mwp-Bounds

2 Installation

3 Examples

3.1 Binary Assignment
3.2 Exponential Program
3.3 While Analysis
3.4 Infinite Program
3.5 Challenge Example

4 Learn More

1 Introduction

pymwp (“pai m-w-p”) is a tool for automatically performing static analysis on programs written in a subset
of the C language. It analyzes resource usage and determines if program variables’ growth rates are no more
than polynomially related to their inputs sizes.

The theoretical foundations are described in paper the “mwp-Analysis Improvement and Implementation:
Realizing Implicit Computational Complexity” (cf. “Learn More” for additional references and links). The
technique is generic and applicable to any imperative language. pymwp is an implementation demonstrating
this technique concretely on C programs. The technique is originally inspired by “A Flow Calculus of
mwp-Bounds for Complexity Analysis”.

This guide explains pymwp usage and behavior through several examples.

1.1 Property of Interest

For an imperative program, the goal is to discover a polynomially bounded data-flow relation, between the
initial values of the variables (denoted X1,..,Xn) and its final values (denoted X1',..,Xn").

For a program written in C language, this property can be presented as follows.

void main(int X1, int X2, int X3){
// initial values T

/*

* yarious commands involving
* vartables X1, X2, X3

*/

// X1', X2', X3' (final wvalues)
}
Question: Vn, is X,, » X,, polynomially bounded in inputs?

We answer this question using the mwp-flow analysis, implemented in the pymwp static analyzer.

1.2 What mwp-Flow Analysis Computes

The mwp-flow analysis works to establish a polynomial growth bound for input variables by applying inference
rules to program’s commands.

Internally, the analysis tracks coefficients representing dependencies between program’s variables. These
coefficients (or “flows”) are 0, m,w, p and co. They characterize how data flows between variables.

e 0 — no dependency

o m — maximal (of linear)
e w — weak polynomial

e p — polynomial

e 00 — infinite

with ordering: 0 < m < w < p < 0co. The analysis name also comes from these coefficients.

After analysis, two outcomes are possible. (A) The program’s variables values can be bounded by a polyno-
mial in the input’s values, or (B) the analysis determines it is impossible to establish such a bound. Due to
non-determinism, many derivation paths need to be explored to determine this result.

The analysis succeeds if — for some derivation — no pair of variables is characterized by oo-flow. That is,
obtaining an oco-free derivation implies existence of a polynomial growth bound; i.e., the program has the
property of interest, or we can say that the program is derivable. The soundness theorem of the mwp-calculus
guarantees that if such derivation exists, the program variables’ value growth is polynomially bounded in
inputs.

Program fails the analysis if every derivation contains an co coefficient. Then it is not possible to establish
polynomial growth bound. For these programs, pymwp reports an oo-result.

1.3 Interpreting mwp-Bounds

If the analysis is successful, i.e., polynomial growth bound exists, it is represented using mwp-bounds.
An mwp-bound is a number theoretic expression of form: max(Z, poly, (§)) + poly,(Z).

Disjoint variable lists Z, 4 and Z capture dependencies of an input variable. Dependencies characterized by
m-flow are in Z, w-flow in ¥, and p-flow in Z. The polynomials poly; and poly, are built up from constants,
variables, and operators + and x. Each variable list may be empty and poly; and poly, may not be present.

For multiple input variables, the result is a conjunction of mwp-bounds, one for each input variable.

Example 1. Assume program has one input variable named X, and we have obtained a bound: X’ < X.
The bound expression means the final value X depends only on its own initial value X.

Example 2. Assume program has two inputs, X and Y, and we obtained a bound: X’ < XAY" < max(X,0)+
Y.

« Final value X' depends on its own initial value X.
o Final value Y’ depends on initial values of inputs X and Y.
e The bound expression can be simplified to X <XAY <X+4V.

2 Installation

This section explains how to get started using pymwp. We recommend installing pymwp locally for an
interactive tutorial experience.

Check environment requirements

pymwp requires Python runtime 3.7 — 3.11 (current latest).

To check currently installed version, run:
python3 --version

On systems that default to Python 3 runtime, use python instead of python3.

Instructions for installing Python for different operating systems can be found at python.org .
Install pymwp

Install pymwp from Python Package Index:

pip3 install pymwp==0.4.2

Download examples

Download a set of examples.

wget https://github.com/statycc/pymwp/releases/download/0.4.2/examples.zip

Alternatively, download the set of examples using a web browser:
https://github.com/statycc/pymwp/releases/download/0.4.2 /examples.zip
Unzip the examples

Unzip examples.zip using your preferred approach.

This completes the setup.

https://github.com/statycc/pymwp/releases/download/0.4.2/examples.zip

3 Examples
We now demonstrate use of pymwp on several examples. To ease the presentation, we will use multiple
command line arguments.

o --fin — always run analysis to completion (even on failure)
e ——info — reduces amount of terminal output to info level
e —-no_time — omits timestamps from output log

For a complete list of available command arguments, run:

pymwp --help

3.1 Binary Assignment

This example shows that assigning a compounded expression to a variable results in correct analysis.

Analyzed Program: assign_expression.c

int foo(int y1, int y2){
y2 =yl + yi;
}

It is straightforward to observe that this program has a polynomial growth bound. The precise value of that
bound is y1’ = y1 Ay2" < 2xy1. Although the program is simple, it is interesting because binary operations
introduce complexity in program analysis.

CLI Command

The current working directory should be the location of unzipped examples from Installation Step 4.
pymwp basics/assign_expression.c --fin --info --no_time
Output:

INFO (result): Bound: yl1' < y1 A y2' < yi1

INFO (result): Bounds: 3

INFO (result): Total time: 0.0 s (0 ms)

INFO (file_io): saved result in output/assign_expression.json

Discussion

The analysis correctly assigns a polynomial bound to the program. The bound obtained by the analyzer is
y1’ < y1 Ay2" < yi. Comparing to the precise value determined earlier, this bound is correct, because we
omit constants in the analysis results.

Due to non-determinism, the analyzer finds three different derivations that yield a bound. From the . json
file, that captures the analysis result in more technical detail, it is possible to determine these three bounds
are:

e y1' <y1 Ay2 <max(0,0) + yi
e y1' <y1 Ay2 <max(0,0) + yi
o y1' <y1 Ay2 <max(0,y1) + 0

They all simplify to y1” < y1 A y2" < y1. This concludes the obtained result matches the expected result.

3.2 Exponential Program

A program computing the exponentiation returns an infinite coefficient, no matter the derivation strategy
chosen.

Analyzed Program: exponent_2.c

int foo(int base, int exp, int i, int result){
while (i < exp){
result = result * base;
i=1+1;

}

This program’s variable result grows exponentially. It is impossible to find a polynomial growth bound,
and the analysis is expected to report oco-result. This example demonstrates how pymwp arrives to that
conclusion.

CLI Command

pymwp infinite/exponent_2.c --fin --info --no_time
Output:

INFO (result): foo is infinite

INFO (result): Possibly problematic flows:

INFO (result): base — result || exp — result || i — result || result — result
INFO (result): Total time: 0.0 s (2 ms)

INFO (file_io): saved result in output/exponent_2.json

Discussion

The output shows that the analyzer correctly detects that no bound can be established, and we obtain
oo-result. The output also gives a list of problematic flows. This list indicates all variable pairs, that along
some derivation paths, cause oo coefficients to occur. The arrow direction means data flows from source
— target. We can see the problem with this program is the data flowing to result variable. This clearly
indicates the origin of the problem, and allows programmer to determine if the issue can be repaired, to
improve program’s complexity properties.

3.3 While Analysis

A program that shows infinite coefficients for some derivations.

Analyzed Program: notinfinite_3.c

int foo(int X0, int X1, int X2, int X3){
if (X1 == 1){

X1 = X2+X1;
X2 = X3+X2;
Y
while (X0<10){
X0 = X1+X2;
}

}

This program contains decision logic, iteration, and multiple variables. Determining if a polynomial growth
bound exists is not immediate by inspection. It is therefore an interesting candidate for analysis with

pymwp!

CLI Command

pymwp not_infinite/notinfinite_3.c --fin --info --no_time
Output:

INFO (result): Bound: X0' < max(X0,X1)+X2*X3 A X1' < X1+X2 A X2' < X2+X3 A X3' < X3
INFO (result): Bounds: 9

INFO (result): Total time: 0.0 s (3 ms)

INFO (file_io): saved result in output/notinfinite_3.json

Discussion

Compared to previous examples, the analysis is now getting more complicated. We can observe this in the
number of discovered bounds and the form of the bound expression. The number of times the loop iterates,
or which branch of the if statement is taken, is not a barrier to determining the result.

From the bound expression, we can determine the following.

e X0 has the most complicated dependency relation. Its mwp-bound combines the impact of the if
statement, the while loop, and the chance that the loop may not execute.

e X1 and X2 have fairly simple growth dependencies, originating from the if statement.

e X3 is the simplest case — it never changes. Therefore, it only depends on itself.

Overall, the analysis concludes the program has a polynomial growth bound.

3.4 Infinite Program

A program that shows infinite coefficients for all choices.

Analyzed Program: infinite_3.c

int foo(int X1, int X2, int X3){
if (X1 == 1){

X1 = X2+X1;

X2 = X3+X2;
Y
while(X1<10){

X1 = X2+X1;
}

}

If you studied the previous example carefully, you might notice that this example is very similar. There is a
subtle differences: variable X0 has been removed and its usages changed to X1. This example demonstrates
how this seemingly small change impacts the analysis result.

CLI Command

pymwp infinite/infinite_3.c --fin --info --no_time
Output:

INFO (result): foo is infinite

INFO (result): Possibly problematic flows:

INFO (result): X1 — X1 || X2 — X1 || X3 — X1

INFO (result): Total time: 0.0 s (2 ms)

INFO (file_io): saved result in output/infinite_3.json

Discussion

We can observe the result is co. Thus, even a small change can change the analysis result entirely.

The output reveals the problem arises from how data flows from source variables X1, X2, and X3, to target
variable X1. Observe that even though there is no direct assignment from X3 to X1, the analysis correctly
identifies this dependency relation, that occurs through X2.

From the output, we have identified the point and source of failure. Conversely, we know other variable
pairs are not problematic. By focusing on how to avoid “too strong” dependencies targeting variable X1,
programmer may be able to refactor and improve the program’s complexity properties.

3.5 Challenge Example

Try to guess the analysis outcome before determining the result with pymwp.

Analyzed Program

int foo(int X0, int X1, int X2){

if (X0) {

X2 = X0 + X1;
}
elsed{

X2 = X2 + X1;
}
X0 X2 + X1;
X1 = X0 + X2;
while(X2){

X2 = X1 + XO0;

3
}

After seeing the various preceding examples — with and without polynomial bounds — we present the following
challenge. By inspection, try to determine if this program is polynomially bounded w.r.t. its input values.

It is unknown which if branch will be taken, and whether the while loop will terminate, but this is not a
problem for determining the result.

CLI Command

pymwp other/dense_loop.c --fin --no_time --info
Output:

INFO (result): Bound: X0' < max(X0,X2)+X1 A X1' < XO0*X1*X2 A X2' < max(X0,X2)+X1
INFO (result): Bounds: 81

INFO (result): Total time: 0.0 s (29 ms)

INFO (file_io): saved result in output/dense_loop.json

Discussion

Even with just 3 variables we can see—in the obtained bound expression and the number of bounds—that
this is a complicated derivation problem. The analyzer determines the program has a polynomial growth
bound. Let us reason informally and intuitively why this obtained result is correct.

We can observe in the bound expression, that all three variables have complicated dependencies on one
another; this corresponds to what is also observable in the input program.

Regarding variables X0 and X1, observe there is no command, with either as a target variable, that would give
rise to exponential value growth (need iteration). Therefore, they must have polynomial growth bounds.

Variable X2 is more complicated. The program has a while loop performing assignments to X2 (potentially
problematic), and the while loop may or may not execute.

e Case 1: loop condition is initially false. Then, final value of X2 depends on the if statement, and in
either branch, it will have polynomially bounded growth.

10

e Case 2: loop condition true — at least one iteration will occur. The program iteratively assigns values
to X2 inside the while loop. However, notice the command is loop invariant. No matter how many
times the loop iterates, the final value of X2 is X1 4+ X0. We already know those two variables have
polynomial growth bounds. Therefore, X2 also grows polynomially w.r.t. its input values.

This reasoning concurs with the result determined by pymwp.

4 Learn More

This guide has offered only a very short introduction to mwp-analysis and pymwp.
If you wish to explore more, have a look at:

o “muwp-Analysis Improvement and Implementation: Realizing Implicit Computational Complexity”?

Describes theoretical foundations behind pymwp.

e “A Flow Calculus of mwp-Bounds for Complexity Analysis™?
Original mwp-flow analysis technique.

o Documentation® — Includes information about supported C language features, etc.
« Online demo* — Run pymwp online on more than 40 examples.
o Source code® — pymwp is open source.

o License® — pymwp is licensed under GPLv3.

1 https://doi.org/10.4230/LIPIcs. FSCD.2022.26
2https://doi.org/10.1145/1555746.1555752
3https://statycc.github.io/pymwp
4https://statycc.github.io/pymwp/demo/
Shttps://github.com/statycc/pymwp
Shttps://github.com/statycc/pymwp/blob/main/LICENSE

11

https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1145/1555746.1555752
https://statycc.github.io/pymwp
https://statycc.github.io/pymwp/demo/
https://github.com/statycc/pymwp
https://github.com/statycc/pymwp/blob/main/LICENSE

	Introduction
	Property of Interest
	What mwp-Flow Analysis Computes
	Interpreting mwp-Bounds

	Installation
	Examples
	Binary Assignment
	Exponential Program
	While Analysis
	Infinite Program
	Challenge Example

	Learn More

